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Dynamic scaling in a(2+1)-dimensional limited mobility model of epitaxial growth
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We study statistical scale invariance and dynamic scaling in a simple solid-on-satid )¢@imensional
limited mobility discrete model of nonequilibrium surface growth, which we believe should describe the low
temperature kinetic roughening properties of molecular beam epitaxy. The model exhibits longansdnt
anomalous and multiaffine dynamic scaling properties similar to that found in the correspdtdithyy
dimensional problem. Using large-scale simulations we obtain the relevant scaling exponents, and compare
with continuum theoried.51063-651%97)13905-9

PACS numbsg(s): 05.40:+j, 81.10.Aj, 81.15.Hi, 05.70.Ln

A key issue in kinetic surface roughenify2] is making  site is availablgwhich would increase the atom’s coordina-
a connection between theoretical growth universality classesion numbey), the atom is again incorporated at the site of
as defined by continuum growth equations, for example, andeposition. If more than one final site could increase its co-
experimentally observed rough growth in real surfaces thaordination number, the atom randomly moves to any one of
generally depends on many details such as growth conditiorthese final sites with equal probability and is incorporated
(e.g., temperature, surface orientation, and growth e there permanently. The motivation for this manifestly non-
atomistic rules controlling attachment, detachment, evaporaequilibrium growth model is that during low temperature
tion, and, most importantly, diffusion of the deposited ada-molecular beam epitaxy it is unlikely for atoms to break
toms at the growth front. The concept driving much of thelateral bonds, and only deposited adatoms without any lateral
kinetic surface roughening research is that only a few unibonds can move with appreciable mobility. This is a typical
versality classe$l,2] describe theasymptoticgrowth prop-  example of a limited mobility growth model where atoms at
erties in many seemingly different nonequilibrium surfacekink and trapping sitegi.e., those with at least one lateral
growth problems as most of the details arelevantfrom a  bond simply do not move. A typical example of a saturated
renormalization group viewpoint and do not affect thegrowth morphology resulting from these rules is shown in
asymptotic behavior. Much recent work has gone into buildFig. 1.
ing simple atomistic discrete nonequilibrium growth models We first study theglobal scaling behavior of the surface
that catch the essential aspects of a complicated growth proby considering the dynamical surface widtfy which is the
lem and include only theelevantdynamical processes de- root-mean-square height fluctuation of the growing surface,
termining the asymptotic growth behavior. One such non-defined as
equilibrium growth model was introduced by one of us in
Ref. [3] in the context of one dimensional molecular beam
epitaxy. This growth model has since been extensively stud-
ied[4], and it seems to descrilhé] well the low temperature
growth properties of realistic stochastic Monte Carlo simula-
tion results of molecular beam epitaxy. Although the growth =0
model introduced in Ref[3] has been fairly extensively
studied in the literaturf4], almost all of the existing work is
in 1+1 dimensions where ane dimensional substrate
roughens as it grows. We present in this paper results of a *°
systematic study of the growth model of R¢8] in the
physically relevant 21 dimensions.

In our growth mode[3], atoms are randomly deposited
on anL X L (we have studied system sizes up.te 10° with
a maximum of 10 deposited layers, which amount to the
deposition of up to 18 atoms flat substrate under solid-on-
solid deposition and growth conditions. If a randomly depos- 2
ited atom hast leastone lateral nearest-neighbor bofie.,
if its initial coordination number is 2 or moyethen it is
incorporated at the deposition site and stays there forever.

10

Otherwise the atom could move to a nearest-neighbor lateral °, 50 v PR —
site (with no restriction on the number of vertical sites it
moves in the growth directigrfor incorporation provided it FIG. 1. The saturated growth morphology on a XAMO sub-

canincrease(but not necessarilynaximize its coordination  strate at % 10° ML. Darker (lighter) shades represent lower
number at the final site. If no such nearest-neighbor laterahighe points on the surface.
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FIG. 2. The interface widtW as a function of deposition time
t in the 500< 500 systemnileft inset: 100< 100 system Right inset:
The saturation widttW,, vs the substrate size.
W(L,t)={(h—(h))?)¥2 )
If there is statistical scale invariance in the problem, the
W scales with the lateral system sikeand timet as[1,2]

W(L,t)~L4F(L/&(1)), 2
where the scaling functiof(y) is
. const fory<1
)= y ¢ fory>1. @

Here { is the roughnessexponent, and(t) is the lateral
correlation length obeying the dynamic scaling relation
£(t)~tY? wherez is the dynamicalexponent. Time in the

simulation is measured in the average number of deposited
layers. Combining these scaling relations the interface width

W can be written a®V(L,t<L?)~t? andW(L,t>L?)~L¢,
whereB= {/z is thegrowth exponent. Our calculated results
for W(L,t) are shown in Fig. 2 for a substrate size-500
and 100 (inse). The calculated growth exponerfor
L=500) clearly shows a crossover from an initial value of

about 0.25 to an asymptotic value of about 0.2. We find the

same crossover behavior in other large systems=(500—
1000 we have studied — in smaller systenis< 100), how-
ever, the crossover to the asymptotic exponggi=0.2) is
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where r=|r| and the asymptotic behavior of the scaling

functionf(y) is the same as that of the functifrin Eq. (3).

It is, however, known that the correspondioge dimen-
sional growth model exhibits anomalo(i§] and multiaffine
[6] scaling behavior in contrast to the simple conventional
dynamic scaling defined in E¢3). We find the same to be
true in the (2+1)-dimensional model also with the only dif-
ference being that the anomalous behavior is manifestly a
long-lived (over three decades in tilm&ansient in 2+ 1 di-
mensions whereas in#1 dimensions it last§4—6] for at
least eight decades in tim@and perhaps much longer; the
true asymptotic limit may not have yet been reached in
1+1 dimensiond7]). In order to study multifractality, we
follow Krug [6] and define a generalized correlation function
by considering higher moments of the equal-time height dif-
ference correlator:

Gy(r,t)=(|h(x+r,t)—h(x,1)[9)*. (5)

These functionsG, [note that forqg=2 one gets back the

G of Eq(4)] have g-dependent roughness exponents if the
growing surface is multiaffine whereas they all scale with the
same exponent in a self-affine statistically scale invariant

Surface.

In Fig. 3 we show the multifractal behavior Gf,(r,t) in
our model. We find exactly the same qualitative and quanti-
tative multifractal behaviofwith the same critical exponents
within numerical accuragyfor the different system sizes
(L=100-1000) we study. We summarize beldaee Refs.
[2,4-7) for detaily the asymptotic behavior of the correla-
tion function G, in the anomalous and multiaffine scaling
situation depicted in Fig. 3.

Multiaffine scaling(as opposed to statistically scale in-
variant self-affine scaling signifies q-dependent dynamic
scaling properties 06 :

réa
th

forr<<g(t)

for r>£(t). ©)

Gq(r,t)~[

In addition, thelocal and theglobal dynamic scaling prop-
erties are necessarily different in this anomalous scaling situ-

ation. Thusf in Eq. (4) scales differently fronf in Egs.(2)
and(3):

y “a
y

Using the asymptotic behavior of(t) we obtain the

fory<1

f(y)= (7)

fory>1.

not seen angB remains around 0.25 as can be seen in theyxsymptotic behavior for thgth moment of the height-height

inset of Fig. 2. In a second inset, the values of the saturatio
width W(L,t—o) are plotted as a function of the system
size L=20-100.(The smallL values in the saturation plot
reflect the high value of~3 in the problem:L=100 re-
quires more than fdayers to saturatgThe slope yields the
global roughness exponefjt=0.56+0.1.

The local scaling behavior is studied by calculating the
height-height correlation functionG(r,t) defined as
G(r,t)=(|h(x+r,t) —h(x,t)|2)¥2. The conventional scaling
form of the correlation function is

G(r,t)~rff(r/&t)), (4)

Borrelation function as

for r<t2<L
forr<L<t
for r>t1z,

rgq— agtaq 1z
réa~%q|_“q
th

Gy(r,t)~ (8)

Note that an additional scaling exponesy is needed to
fully characterize the anomalous multiscaling situation. In
the conventional scaling situatian,=0 and{,={.

In Fig. 3(@ we show our results foG, for L=500 at
10° ML. It is obvious that the lines for differentj have
different local roughness exponentsq’lzgq—aq, implying
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the slope &,/2) ranges from 0.22q=1) to 0.31 g=4). It

is absolutely clear, however, from Fig(l8 that oy(t) is
showing a crossover behavior where gféectiveexponent
(aq/2) of Eq.(9) is approaching zero long before the steady-
state saturation regime whegét) ~L. It is obvious from the
inset that the slopes af4(t) curves, instead of staying at
constant values otyy/z, are going down to zero around
t~10°, which is long before the expected saturation time
t.=10° (L=1000).[The correspondingry(t) results for a

' 039520004 smallerL= 100 system size show the vanishing of the effec-
2 029520002 tive exponentsy,/z aroundt~ 10°, implying that multiscal-
j Zfzj * 2221 ing lasts for about three decades in time in axA00 sys-
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tem] The bending of theoy(t) curve as a function of,
which is glaringly apparent in our Fig(l3), can also be seen
(in a much less pronounced fashjoim the corresponding
(1+1)-dimensional result§4,6]. Our results presented in
Fig. 3(b) make it obvious that the multiscaling observed in
our (2+1)-dimensional simulations is a long-lived transient
and isnot the asymptotic behavior of the limited mobility
epitaxial growth model introduced in Rgf3]. Our results
strongly indicate that the same must be true i1l dimen-
sions also, which has already been suggested in [Réf.
except that the multiscaling transient in+1 dimensions
lasts for at least Fotime steps and perhaps much longer.
We have, in fact, studied a1+1)-dimensional ver-
sion of our problem fo.=10* up to 1¢ ML of growth,
and we find that ay/z decreases from an initial
value of @q/z=0.195Q=1), 0.222(=2), 0.262¢=3),
0.294(g=4) to a4/z=0.107, 0.143, 0.168, 0.179, defini-
tively establishing that the multiscaling behavidr8] of the

growth model introduced in Ref3] is an extremely long-
lived transient, even in 1 dimensions.

Having established that the anomalous multiscaling be-
havior of our limited mobility growth model, while being
extremely interesting, is most definitelyt@nsient(and not
an asymptotig behavior, we need to ask the obvious ques-
tion: what is the universality class of the discrete growth
model introduced in Ref.3]? The asymptotic critical expo-
nents 3~0.2 and{~0.6 in Fig. 2 are consistent with the
multifractality. Thelocal roughness exponeng$1 vary from  nonlinear MBE growth equation introduced in Rdfg] and
0.184 forq=4 to 0.395 forq=1. Comparing{,=0.3 with  [10]. We believe that the discrete growth model of Ré&f,
£=0.56 (cf. Fig. 2 we conclude that the local and global which we study here in 21 dimensions, does indeed as-
roughness in our problem have different behavimmoma- ymptotically belong to the universality class of the nonlinear
lous scaling[5]), which is one direct consequence of the growth equatiorf9,10]
spatial multiscaling. In order to gain more insight into the H
multiaffine scaling behavior we show in Fig(t3 the time on 4 2 2
evolution of the nearest-neighbor height difference and its a_t_y“v h+AVE(Vh)"+ 7,
higher momentsr,(t)=G,(r=1,t) for L=1000. Substitut-
ingr=1 in Eq.(8), we get(following Ref.[6])

FIG. 3. (a) Height-height correlation functio(r), g=1—-4
from bottom to top. (=500 at 18 ML). The solid lines indicate
power law fits with slopeg’(’1 as shown in the table at the lower right.
(b) Nearest-neighbor height difference functien(t), g=1—4
from bottom to top [=1000). Inset: The local derivative of
logigoq With respect to logt. ¢, A, O, and X correspond to
q=1, 2, 3, and 4, respectively.

(10

which in 2+1 dimensions ha$10] the critical exponents
B=1/5 and{=2/3, which, within numerical errors, is con-
sistent with the critical exponents we obtain in this paper
[11]. The corresponding linear equatipwith A,=0 in Eq.
(10] has=1/4 in 2+1 dimensions, explaining the cross-
In the conventional scaling situatiom,=0 for all g, and  over from8~0.25 to 0.20 seen in our Fig. Pt should be
thereforeo(t) quickly saturates to a constant value almostemphasized that in+1 dimensions even the largest simu-
immediately. But in the anomalous scaling casgt) grows  lations of this mode[3—7] obtain 8~0.375, which is con-
with time [5,6,8] before saturatingat very long time in the  sistent with the linear growth equation {=0), and the an-
steady state whe#(t)~L. The approximate crossover time ticipated crossover to the nonlinear model has not yet been
for this saturation ig.~L? and can be very largé,6,8. In  definitely established.Note that Eq.(10) breaks the up-
Fig. 3(b) the nearest-neighbor height differenegincreases down symmetry in the problem and is therefore a true non-
with time for all g in the small time region. For 4£t<<20, equilibrium model of growth. The measured skewness

t®a’z  for tY2<L

for t¥2> L.

O'q(t)’v )

L%a
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SE((h—<h>)3)/<(h—<h>)2>3/2 and the effective fourth cu- Edwards-Wilkinson universality class, where our measured
malantQ={((h— (h))*)/{(h—(h))?)2—3 in our simulations tilt-dependent surface current has a small negdtioevnhill)
are approximately—0.5 and 1.2, respectively, in the satu- value (increasing in magnitude with inclinatipf approxi-
rated regime. mately —0.1 at a slope of 2. We see essentially no multi-
The anomalous scaling and multifractality in our resultsscaling behavior in our(2+1)-dimensional Wolf-Villain
most likely arise from the existence of an infinite series ofmodel simulationsizg/z for L=500 is essentiallyy inde-
higher-order marginally irrelevant terms of the form pendent and decreases from a very small initial value of
Sh-2A2nV?(Vh)?" on the right-hand side of E410), as has  about 0.06 to zero at~ 10°. Clearly, the Wolf-Villain model
recently been speculated in R¢#] and discussed exten- behaves very differently from the model of RdB] in
sively in Ref.[7]. Further discussiofi7] of this issue is be- 2+1 dimensions even though their effective behavior is
yond the scope of our work, and we only note that this infi-ynown to be “almost” identical in 1 dimensions. The
nite serie§ of higher_order gr_adient_ terms should have a mucf}ct that these two models, Ref8] and[14], have different
stronger influence in 1 dimensions where they are all \njyersality classes was actually pointed out some time ago
marginally relevantexplaining why the observed multifrac- 17] aithough substantial confusion still seems to exist about
tality is so much more pronounced int1lL dimensiong6]. ¢ relationship. Results presented here strongly support the
Finally, we note that the standard Laplacian term,e, that the limited mobility nonequilibrium epitaxial
v,V<h, of the Edwards-Wilkinson equatiq 2] is absent for growth model introduced in Ref3] is asymptotically de-
the growth model introduced in ReB3] in contrast o other scribed by the nonlinear MBE growth equatid®) although
popular splld-on-solld growth_mo_de[&3,14] studied in the here are interesting nonasymptotic corrections associated
Ilterattzjre in the contgxt of epitaxial growth. The absence o ith the anomalous multiscaling phenomena. The signifi-
the V*h term [and its fourth order counterpaft0], the cance of this finding lies in the fact that most experimental

3 . . .
V (Vh)” term] .'n.the growth model of Re(3] IS, I fact, an investigations[18] of the kinetic surface roughening phe-
exact result arising from a hidden symmelg} in the prob- nomenon in epitaxial growth obtain large growth

lem, which makes the inclination-dependent current on at .
o . . B~0.2—-0.3) and roughnessa=0.5—1) exponents, indi-
tited substrat¢15] in this growth model vanish exactlpur cating that the linear and the nonlinear MBE growth equation

gglculat.ed lcu.rrenlt t_on .:t fgﬁd shgbﬁt_rate n (.)g+l)' may be playing important roles in real growth. The model of
Imensional simulation | » WRICH 1S ZEro within our — pag [3] seems to be the only known solid-on-solid epitaxial

numerical accurady We have also studied the closely re- : : .
e ) rowth model that is asymptoticallgot described by the
lated Wolf-Villain model[14], where the deposited adatoms ﬁ]near second-order Edwz)i/rdg-WilkinZon equation, blilt by the

(independgnbf their_initial Iate_ral coordinfitiohseek o_ut th_e fourth-order nonlinear MBE growth equatiéng)].
nearest-neighbor sites ahaximumcoordination, which is
now definitely knowr{ 15,16 to asymptotically belong to the This work has been supported by the U.S. ONR.
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