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Dynamic scaling in a„211…-dimensional limited mobility model of epitaxial growth

S. Das Sarma and P. Punyindu
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 9 January 1997!

We study statistical scale invariance and dynamic scaling in a simple solid-on-solid (211)-dimensional
limited mobility discrete model of nonequilibrium surface growth, which we believe should describe the low
temperature kinetic roughening properties of molecular beam epitaxy. The model exhibits long-livedtransient
anomalous and multiaffine dynamic scaling properties similar to that found in the corresponding~111!-
dimensional problem. Using large-scale simulations we obtain the relevant scaling exponents, and compare
with continuum theories.@S1063-651X~97!13905-8#

PACS number~s!: 05.40.1j, 81.10.Aj, 81.15.Hi, 05.70.Ln
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A key issue in kinetic surface roughening@1,2# is making
a connection between theoretical growth universality clas
as defined by continuum growth equations, for example,
experimentally observed rough growth in real surfaces
generally depends on many details such as growth condit
~e.g., temperature, surface orientation, and growth rate! and
atomistic rules controlling attachment, detachment, evap
tion, and, most importantly, diffusion of the deposited ad
toms at the growth front. The concept driving much of t
kinetic surface roughening research is that only a few u
versality classes@1,2# describe theasymptoticgrowth prop-
erties in many seemingly different nonequilibrium surfa
growth problems as most of the details areirrelevant from a
renormalization group viewpoint and do not affect t
asymptotic behavior. Much recent work has gone into bu
ing simple atomistic discrete nonequilibrium growth mod
that catch the essential aspects of a complicated growth p
lem and include only therelevantdynamical processes de
termining the asymptotic growth behavior. One such n
equilibrium growth model was introduced by one of us
Ref. @3# in the context of one dimensional molecular bea
epitaxy. This growth model has since been extensively s
ied @4#, and it seems to describe@4# well the low temperature
growth properties of realistic stochastic Monte Carlo simu
tion results of molecular beam epitaxy. Although the grow
model introduced in Ref.@3# has been fairly extensively
studied in the literature@4#, almost all of the existing work is
in 111 dimensions where aone dimensional substrate
roughens as it grows. We present in this paper results
systematic study of the growth model of Ref.@3# in the
physically relevant 211 dimensions.

In our growth model@3#, atoms are randomly deposite
on anL3L ~we have studied system sizes up toL5103 with
a maximum of 107 deposited layers, which amount to th
deposition of up to 1013 atoms! flat substrate under solid-on
solid deposition and growth conditions. If a randomly dep
ited atom hasat leastone lateral nearest-neighbor bond~i.e.,
if its initial coordination number is 2 or more!, then it is
incorporated at the deposition site and stays there fore
Otherwise the atom could move to a nearest-neighbor lat
site ~with no restriction on the number of vertical sites
moves in the growth direction! for incorporation provided it
can increase~but not necessarilymaximize! its coordination
number at the final site. If no such nearest-neighbor lat
551063-651X/97/55~5!/5361~4!/$10.00
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site is available~which would increase the atom’s coordin
tion number!, the atom is again incorporated at the site
deposition. If more than one final site could increase its
ordination number, the atom randomly moves to any one
these final sites with equal probability and is incorpora
there permanently. The motivation for this manifestly no
equilibrium growth model is that during low temperatu
molecular beam epitaxy it is unlikely for atoms to bre
lateral bonds, and only deposited adatoms without any lat
bonds can move with appreciable mobility. This is a typic
example of a limited mobility growth model where atoms
kink and trapping sites~i.e., those with at least one latera
bond! simply do not move. A typical example of a saturat
growth morphology resulting from these rules is shown
Fig. 1.

We first study theglobal scaling behavior of the surfac
by considering the dynamical surface widthW, which is the
root-mean-square height fluctuation of the growing surfa
defined as

FIG. 1. The saturated growth morphology on a 1003100 sub-
strate at 33106 ML. Darker ~lighter! shades represent lowe
~higher! points on the surface.
5361 © 1997 The American Physical Society
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W~L,t !5Š~h2^h&!2‹1/2. ~1!

If there is statistical scale invariance in the problem, th
W scales with the lateral system sizeL and timet as @1,2#

W~L,t !;Lz f „L/j~ t !…, ~2!

where the scaling functionf (y) is

f ~y!5H const fory!1

y2z for y@1.
~3!

Here z is the roughnessexponent, andj(t) is the lateral
correlation length obeying the dynamic scaling relati
j(t);t1/z wherez is the dynamicalexponent. Time in the
simulation is measured in the average number of depos
layers. Combining these scaling relations the interface w
W can be written asW(L,t!Lz);tb andW(L,t@Lz);Lz,
whereb5z/z is thegrowthexponent. Our calculated resul
for W(L,t) are shown in Fig. 2 for a substrate sizeL5500
and 100 ~inset!. The calculated growth exponent~for
L5500) clearly shows a crossover from an initial value
about 0.25 to an asymptotic value of about 0.2. We find
same crossover behavior in other large systems (L 5 500–
1000! we have studied — in smaller systems (L5100), how-
ever, the crossover to the asymptotic exponent (b'0.2) is
not seen andb remains around 0.25 as can be seen in
inset of Fig. 2. In a second inset, the values of the satura
width W(L,t→`) are plotted as a function of the syste
sizeL520–100.~The smallL values in the saturation plo
reflect the high value ofz;3 in the problem:L5100 re-
quires more than 106 layers to saturate.! The slope yields the
global roughness exponentz50.5660.1.

The local scaling behavior is studied by calculating th
height-height correlation functionG(r ,t) defined as
G(r ,t)5^uh(x1r ,t)2h(x,t)u2&x

1/2. The conventional scaling
form of the correlation function is

G~r ,t !;r z f̂ „r /j~ t !…, ~4!

FIG. 2. The interface widthW as a function of deposition time
t in the 5003500 system~left inset: 1003100 system!. Right inset:
The saturation widthWsat vs the substrate sizeL.
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where r5ur u and the asymptotic behavior of the scalin
function f̂ (y) is the same as that of the functionf in Eq. ~3!.
It is, however, known that the correspondingone dimen-
sionalgrowth model exhibits anomalous@5# and multiaffine
@6# scaling behavior in contrast to the simple conventio
dynamic scaling defined in Eq.~3!. We find the same to be
true in the (211)-dimensional model also with the only dif
ference being that the anomalous behavior is manifest
long-lived ~over three decades in time! transient in 211 di-
mensions whereas in 111 dimensions it lasts@4–6# for at
least eight decades in time~and perhaps much longer; th
true asymptotic limit may not have yet been reached
111 dimensions@7#!. In order to study multifractality, we
follow Krug @6# and define a generalized correlation functi
by considering higher moments of the equal-time height d
ference correlator:

Gq~r ,t !5^uh~x1r ,t !2h~x,t !uq&1/q. ~5!

These functionsGq @note that forq52 one gets back the
G of Eq.~4!# haveq-dependent roughness exponents if t
growing surface is multiaffine whereas they all scale with
same exponent in a self-affine statistically scale invari
surface.

In Fig. 3 we show the multifractal behavior ofGq(r ,t) in
our model. We find exactly the same qualitative and qua
tative multifractal behavior~with the same critical exponent
within numerical accuracy! for the different system size
(L510021000) we study. We summarize below~see Refs.
@2,4–7# for details! the asymptotic behavior of the correla
tion functionGq in the anomalous and multiaffine scalin
situation depicted in Fig. 3.

Multiaffine scaling ~as opposed to statistically scale in
variant self-affine scaling! signifies q-dependent dynamic
scaling properties ofGq :

Gq~r ,t !;H r zq for r!j~ t !

tb for r@j~ t !.
~6!

In addition, thelocal and theglobal dynamic scaling prop-
erties are necessarily different in this anomalous scaling s
ation. Thus,f̂ in Eq. ~4! scales differently fromf in Eqs.~2!
and ~3!:

f̂ ~y!5H y2aq for y!1

y2zq for y@1.
~7!

Using the asymptotic behavior ofj(t) we obtain the
asymptotic behavior for theqth moment of the height-heigh
correlation function as

Gq~r ,t !;H r zq2aqtaq /z for r!t1/z!L

r zq2aqLaq for r!L!t1/z

tb for r@t1/z.

~8!

Note that an additional scaling exponentaq is needed to
fully characterize the anomalous multiscaling situation.
the conventional scaling situationaq[0 andzq[z.

In Fig. 3~a! we show our results forGq for L5500 at
103 ML. It is obvious that the lines for differentq have
different local roughness exponents,zq8[zq2aq , implying
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55 5363DYNAMIC SCALING IN A (2 11)-DIMENSIONAL . . .
multifractality. Thelocal roughness exponentszq8 vary from
0.184 forq54 to 0.395 forq51. Comparingz2850.3 with
z50.56 ~cf. Fig. 2! we conclude that the local and glob
roughness in our problem have different behavior~anoma-
lous scaling@5#!, which is one direct consequence of th
spatial multiscaling. In order to gain more insight into t
multiaffine scaling behavior we show in Fig. 3~b! the time
evolution of the nearest-neighbor height difference and
higher momentssq(t)[Gq(r51,t) for L51000. Substitut-
ing r51 in Eq. ~8!, we get~following Ref. @6#!

sq~ t !;H taq /z for t1/z!L

Laq for t1/z@L.
~9!

In the conventional scaling situationaq50 for all q, and
thereforesq(t) quickly saturates to a constant value almo
immediately. But in the anomalous scaling casesq(t) grows
with time @5,6,8# before saturating~at very long time! in the
steady state whenj(t);L. The approximate crossover tim
for this saturation istc;Lz and can be very large@5,6,8#. In
Fig. 3~b! the nearest-neighbor height differencesq increases
with time for all q in the small time region. For 1,t,20,

FIG. 3. ~a! Height-height correlation functionGq(r ), q5124
from bottom to top. (L5500 at 103 ML !. The solid lines indicate
power law fits with slopezq8 as shown in the table at the lower righ
~b! Nearest-neighbor height difference functionsq(t), q5124
from bottom to top (L51000). Inset: The local derivative o
log10sq with respect to log10t. L, n, h, and 3 correspond to
q51, 2, 3, and 4, respectively.
ts

t

the slope (aq /z) ranges from 0.22 (q51) to 0.31 (q54). It
is absolutely clear, however, from Fig. 3~b! that sq(t) is
showing a crossover behavior where theeffectiveexponent
(aq /z) of Eq. ~9! is approaching zero long before the stead
state saturation regime wherej(t);L. It is obvious from the
inset that the slopes ofsq(t) curves, instead of staying a
constant values ofaq /z, are going down to zero aroun
t;105, which is long before the expected saturation tim
tc>109 (L51000). @The correspondingsq(t) results for a
smallerL5100 system size show the vanishing of the effe
tive exponentsaq /z aroundt'103, implying that multiscal-
ing lasts for about three decades in time in a 1003100 sys-
tem.# The bending of thesq(t) curve as a function oft,
which is glaringly apparent in our Fig. 3~b!, can also be seen
~in a much less pronounced fashion! in the corresponding
~111!-dimensional results@4,6#. Our results presented in
Fig. 3~b! make it obvious that the multiscaling observed
our ~211!-dimensional simulations is a long-lived transie
and isnot the asymptotic behavior of the limited mobilit
epitaxial growth model introduced in Ref.@3#. Our results
strongly indicate that the same must be true in 111 dimen-
sions also, which has already been suggested in Ref.@7#,
except that the multiscaling transient in 111 dimensions
lasts for at least 108 time steps and perhaps much longe
We have, in fact, studied a~111!-dimensional ver-
sion of our problem forL5104 up to 108 ML of growth,
and we find that aq /z decreases from an initia
value of aq /z50.195(q51), 0.222(q52), 0.262(q53),
0.294(q54) to aq /z50.107, 0.143, 0.168, 0.179, defin
tively establishing that the multiscaling behavior@4–8# of the
growth model introduced in Ref.@3# is an extremely long-
lived transient, even in 111 dimensions.

Having established that the anomalous multiscaling
havior of our limited mobility growth model, while being
extremely interesting, is most definitely atransient~andnot
an asymptotic! behavior, we need to ask the obvious que
tion: what is the universality class of the discrete grow
model introduced in Ref.@3#? The asymptotic critical expo
nentsb'0.2 andz'0.6 in Fig. 2 are consistent with th
nonlinear MBE growth equation introduced in Refs.@9# and
@10#. We believe that the discrete growth model of Ref.@3#,
which we study here in 211 dimensions, does indeed a
ymptotically belong to the universality class of the nonline
growth equation@9,10#

]h

]t
5n4¹

4h1l2¹
2~“h!21h, ~10!

which in 211 dimensions has@10# the critical exponents
b51/5 andz52/3, which, within numerical errors, is con
sistent with the critical exponents we obtain in this pap
@11#. The corresponding linear equation@with l250 in Eq.
~10!# hasb51/4 in 211 dimensions, explaining the cross
over fromb'0.25 to 0.20 seen in our Fig. 2.@It should be
emphasized that in 111 dimensions even the largest sim
lations of this model@3–7# obtainb'0.375, which is con-
sistent with the linear growth equation (l250), and the an-
ticipated crossover to the nonlinear model has not yet b
definitely established.# Note that Eq.~10! breaks the up-
down symmetry in the problem and is therefore a true n
equilibrium model of growth. The measured skewne



-

u-

lts
o
m

-

fi
u
ll
-

m

o

e-
s

red

lti-

of

is

ago
out
t the
l

ated
ifi-
tal
-
th

ion
of
ial

the
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S[Š(h2^h&)3‹/Š(h2^h&)2‹3/2 and the effective fourth cu
malantQ[Š(h2^h&)4‹/Š(h2^h&)2‹223 in our simulations
are approximately20.5 and 1.2, respectively, in the sat
rated regime.

The anomalous scaling and multifractality in our resu
most likely arise from the existence of an infinite series
higher-order marginally irrelevant terms of the for
(n52

` l2n¹
2(“h)2n on the right-hand side of Eq.~10!, as has

recently been speculated in Ref.@4# and discussed exten
sively in Ref.@7#. Further discussion@7# of this issue is be-
yond the scope of our work, and we only note that this in
nite series of higher order gradient terms should have a m
stronger influence in 111 dimensions where they are a
marginally relevant, explaining why the observed multifrac
tality is so much more pronounced in 111 dimensions@6#.

Finally, we note that the standard Laplacian ter
n2¹

2h, of the Edwards-Wilkinson equation@12# is absent for
the growth model introduced in Ref.@3# in contrast to other
popular solid-on-solid growth models@13,14# studied in the
literature in the context of epitaxial growth. The absence
the ¹2h term @and its fourth order counterpart@10#, the
“ (“h)3 term# in the growth model of Ref.@3# is, in fact, an
exact result arising from a hidden symmetry@2# in the prob-
lem, which makes the inclination-dependent current on
tilted substrate@15# in this growth model vanish exactly@our
calculated current on a tilted substrate in our~211!-
dimensional simulation is61024, which is zero within our
numerical accuracy#. We have also studied the closely r
lated Wolf-Villain model@14#, where the deposited adatom
~independentof their initial lateral coordination! seek out the
nearest-neighbor sites ofmaximumcoordination, which is
now definitely known@15,16# to asymptotically belong to the
a

f

-
ch

,

f

a

Edwards-Wilkinson universality class, where our measu
tilt-dependent surface current has a small negative~downhill!
value ~increasing in magnitude with inclination! of approxi-
mately20.1 at a slope of 2. We see essentially no mu
scaling behavior in our~211!-dimensional Wolf-Villain
model simulations:aq /z for L5500 is essentiallyq inde-
pendent and decreases from a very small initial value
about 0.06 to zero att'103. Clearly, the Wolf-Villain model
behaves very differently from the model of Ref.@3# in
211 dimensions even though their effective behavior
known to be ‘‘almost’’ identical in 111 dimensions. The
fact that these two models, Refs.@3# and@14#, have different
universality classes was actually pointed out some time
@17# although substantial confusion still seems to exist ab
their relationship. Results presented here strongly suppor
idea that the limited mobility nonequilibrium epitaxia
growth model introduced in Ref.@3# is asymptotically de-
scribed by the nonlinear MBE growth equation~10! although
there are interesting nonasymptotic corrections associ
with the anomalous multiscaling phenomena. The sign
cance of this finding lies in the fact that most experimen
investigations@18# of the kinetic surface roughening phe
nomenon in epitaxial growth obtain large grow
(b'0.220.3) and roughness (a'0.521) exponents, indi-
cating that the linear and the nonlinear MBE growth equat
may be playing important roles in real growth. The model
Ref. @3# seems to be the only known solid-on-solid epitax
growth model that is asymptoticallynot described by the
linear second-order Edwards-Wilkinson equation, but by
fourth-order nonlinear MBE growth equation@19#.

This work has been supported by the U.S. ONR.
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